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The Equivalence of
Dantzlg's Sef-Dual Parametric Algorithm for Linear Programs

to Lemke's Algorithm for Linear Complementarity Problems
Applied to Linear Programs

Irvin J. Lustig
Department of Operations Research

Stanford University

ABSTRACT

Dantsig has asserted that his self-dual parametric algorithm for solving a linear pro-
gram is equivalent to Lemke's method for solving a linear complementarity problem when
the latter is applied to solve a linear program. In this paper, we formally prove that
Dantzig's assertion is correct-specifically that the point reached along the solution path
after 2t iterations of Lemke's method is identical with the point reached after t iterations
of Dantzig's method.
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1. Intueductlm

Dantsig (1963, Chapter 11) introduced his self-dual parametric algorithm to solve the

linear program

minize cTz (1.1a)

subject to Az >b (1.lb)

_> 0, (1.1c)

which is equivalent to solving the linear complementarity problem

(-b) + (- T ) (y) = (u,(1.2a)
UTy + VTZ = 0, (1.2b)

u,v,z,y > 0. (1.2c)

Ravindran (1970) credits Dantzig with the claim that the solution path resulting from

the application of the self-dual algorithm to the linear program (1.1) corresponds to the

one obtained by applying Lemke's (1965) algorithm to the linear complementarity problem

(1.2). Ravindran developed a modified form of Lemke's algorithm which he proved has a

solution path that corresponds to the self-dual algorithm. He stated "since our method

is a condensed form of Lemke's method in some sense, we have also shown that Dantzig's

claim may be valid." However, Ravindran never proved that his method was equivalent to

Lemke's algorithm.

McCammon (1970), in his Ph.D. thesis at Rensselaer Polytechnic Institute, considered

Dantzig's claim as well. He presented his own parametric pivoting method for general linear

complementarity problems of the form

q + Mz = w, (1.3a)

WTZ = 0, (1.3b)

W,z 0 0, (1.3c)
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of which (1.2) is a special case. McCammon* proved that his algorithm is equivalent to

Lemke's algorithm applied to (1.3). McCammon, however, believed that the solution path

of his algorithm did not correspond to that of Dantzig's self-dual algorithm. In the last

section of Appendix II of his thesis, he applied his algorithm and Dantzig's algorithm to a

numerical example in order to show that the two solution paths need not correspond. A

careful examination of his calculations indicates that he applied the two algorithms to two

different linear programs.

Section 2 of this paper gives a brief description of each of the algorithms; Section 3

contains a formal proof of Dantzig's claim by showing how each of these algorithms when

applied to the same problem follow corresponding solution paths; Section 4 illustrates the

proof with a simple example.

2. Algorithm Descriptions

In order to simplify the discussion, we make the non-degeneracy assumption that the linear

program (1.1) has no primal or dual degenerate vertices. Otherwise, when a ratio test is

performed in each method, the same rules must be used to break ties. The equivalence of

these rules is then clear by their construction.

The self-dual algorithm is initialized for the linear program (1.1) by arbitrarily choos-

ing any vectors f > 0 and d > 0 and scalar 0 > 0 sufficiently large so that -b + Of 0

and c + Od > 0. The parametric linear program

minimize (c + Od)Tx (2.1a)

-Az + u = -b + Of (2.1b)

X,u > 0 (2.1c)

has x = 0 and u = -b + Of as an optimal basic primal feasible solution for all sufficiently

large 9 > 0. The self-dual algorithm lowers 9 to some critical value 00, such that for a small

* A short description of McCammon's algorithm (without proof) is given by Lemke (1970), pp. 359-

361. I find McCammon's proof and the statement of his algorithm somewhat unclear. It is possible that his
algorithm is equivalent to Cottle's (1972) parametric pivoting algorithm. Cottle's algorithm is well-defined
when M has positive principal minor. or M is positive semi-definite. If they are equivalent, then it is not
clear whether McCammon realised the necessity of having asumptions on the properties of Af in order to
make his algorithm well-defined.
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e > 0 and 0 = 96 - e, the current solution to (2.1) is either primal or dual infeasible for

exactly one primal or dual variable, by the non-degeneracy assumption. If primal (dual)

infeasibility occurs, then the dual (primal) simplex method is invoked for one iteration on

(2.1) with 0 = Oo. The theory states that 0 can then be lowered to a value less than 00

while preserving feasibility. This allows the procedure to be iteratively repeated, stopping

at some iteration when 0 = 0 is reached or 0 = 0* > 0 is reached below which 9 cannot be

lowered. In the latter case, (2.1) is either primal or dual infeasible (or both).

Lemke's algorithm is initialized for (1.2) by choosing the same f and d as in the

self-dual method and writing

(_b) + (f )i+ (_..T A) (y) =(2.1a)

uTy + vT= 0, (2.1b)

u,v,,y D 0. (2.1c)

For all sufficiently large 0, u = -b + Of > 0, v = c + Od > 0, x = y = 0 is a basic

feasible solution to (2.1). The variable pairs (z, vj) and (ui, yi) are termed complementary.

Lemke's algorithm first makes the nonbasic artificial variable I basic by first decreasing its

value from +oo to some critical value 6 = l 0 at which some basic variable becomes 0 and is

replaced by I as a basic variable. U remains basic from this point on until its value in some

subsequent basic solution is reduced to zero. The complement of the variable that exited

from the set of basic variables becomes on the next iteration the new entering nonbasic

variable. This new variable is made basic by pivoting out some other basic variable, while

leaving all the other basic variables nonnegative and maintaining a solution to (2.1). The

complement of the variable just pivoted out becomes the new entering nonbasic variable

and the procedure is continued in this way, maintaining an almost complementary form

until either 0 exits the basis at I = 0 or no basic variable blocks the increase of the incoming

nonbasic variable, in which case the linear program is either primal or dual infeasible (or

both).

It is important to understand that the self-dual algorithm manipulates only the data

of the matrix A of the primal linear program while Lemke's algorithm operates both on
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the A matrix of the primal and the AT matrix of the dual problems. Hence, one pivot

in the self-dual algorithm which explicitly exchanges the role of a basic and non-basic

primal variable implicitly exchanges two corresponding dual variables as well. The set of

basic variables for the self-dual method highlights the m primal basic variables and treats

the n basic dual variables implicitly. For Lernke's method, the set of basic variables is a

collection of some (m + n - 1) primal and dual variables of the original problem and #. In

the self-dual algorithm, when zj enters (leaves) the set of basic variables, its complement

vj implicitly leaves (enters) the set of basic variables. Similarly, when ui leaves (enters)

the basic variable set, its complement yi implicitly enters (leaves) that set. In Lemke's

method, all of the components of z, u, v, y are explicitly involved in the pivot process.

When a variable (e.g., uj) leaves the set of basic variables, its complement (e.g., y,) must

enter that set on the next iteration.

3. Proof of Equivalence

To show the equivalence of the self-dual algorithm and Lemke's algorithm applied to the

linear programming problem, the algebraic expressions of the terms of the simplex tableaus

of each method and their updates are presented in such a way that their correspondence

is clear. We assume that A E &mxn, b E R', and c E Rn. Hence the primal vector x is an

element of R", and the dual vector y is an element of Wm. Note that u E "'n and v E 3?.

The simplex tableau for the self-dual method is initialized as follows:

Z,... , n U1 ,..., Um RHS FBAR
U'

-A I -b f
Um

z c 0
DBAR d 0 O =+00

Tableau 3.1

The initial basic solution is

u=-b+fg 0=o (3.1a)

4



v= c+d9 = =0 (3.1b)

for 0 = 0o.

The simplex tableau for Lemke's method is initialized in a form that simplifies the

algebraic updating:

Ul,...-Um l,•••,Vn Yl,... ,Ym 0l1...,n 9 RHS

U 1

IM 0 0 -A -f -b

Urn
V1

0 In AT 0 -d c

L tvn I_ _ _ _ _ _ _ _ _ _ _

Tableau 3.2

The initial basic solution is

U fO - b = nonbasics Y =0 (3.2)V d#O+c I 0

for 0 0 o. The inductive hypothesis for the proof will assume that at iteration t of the

self-dual method, and iteration 2t of Lemke's algorithm, each method has performed pivots

and exchanged labels of complementary pairs of variables to produce Tableaus 3.1 and 3.2,

respectively. In fact, the self-dual method tableau will correspond exactly to Tableau 3.1,

while Lemke's method will have the variable # in its set of basic variables and one variable

among the ui and vi not in the basic set. It will be shown that # can be pivoted out of the

canonical form of Lemke's algorithm at its current value and a non-basic variable pivoted

into the basis in such a way that the new tableau is in the form of Tableau 3.2.

Furthermore, the inductive hypothesis will also assume that -b+f Ot _ 0 and c+dOt _

0, where Og is the value of 0 on iteration t. This inductive assumption allows both methods

to restart from their relabeled tableaus.

For initialization, both methods begin with 00 = +oo and decrease 0 = 9 to some

blocking value 0 = # = 01. The second part of the inductive hypothesis is satisfied.

Because of the symmetry between the primal and dual linear programs, we can assume
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that the self-dual method will do a dual-simplex iteration initially, pivoting out some

ui. Similarly, for Lemke's method, we can assume that 0 will enter into the set of basic

variables, replacing some primal variable ui. Therefore, just before pivoting ui out of the

basis, the canonical form of Tableau 3.1 and Tableau 3.2 correspond and thus, the test

min{ in {---f>O},in {L (3-}}3)

performed by Lemke's Method is seen to be exactly the same as the self-dual test and

therefore the ui chosen to exit will be the same. Note in Tableau 3.2, 0 is decreasing from

+00.

For both methods, let il correspond to some primal slack variable ui, which will exit

the basis. By reordering the equations of the primal linear program, we can assume that

il = 1. The self-dual method will set 0 = bllf1 , and Lemke's method will perform a pivot

in the column corresponding to 0 and the row corresponding to ul. This pivot will cause

to be made basic, replacing ul, and will set # = -bl/(-fl) = 0.

The self-dual method will now perform a dual-simplex ratio test, using 0 to determine

the parametric reduced costs c + dO, when 0 = b /f,:

rain {j-i-dO } fflcj +i d, bl
min-al<0j<0 - in fIc b :aij >0 (3.4)j=1 .... n,c aljd I ffil,.., I Il1

Lemke's method pivots ul out of the basis, and its complement, yl, is required to be

the entering variable. The components of RES for Lemke's method are, when = b /f,:

bi 1h if k = 1;
RtS(k)= -bk+fk(bl/fl) ifk=2,...,m; (3.5)

Scj +dj(bil/fi) ifk=m-+,...,m-+n;j k-rn.

Because the coefficient in Tableau 3.2 in the (ul,y1 ) position is zero, the column for

y, in Tableau 3.2 remains unchanged after the pivot in the (ul,0) position. Hence the

ratio test on the second iteration of Lemke's algorithm is only made among the variables

vj, j = 1,... ,n and is therefore

in {ci +di(bI/f,) : ali > 0 = min fcj + djb al > 0 (3.6)
.. al jfil.., fla :

6



This is the same test as the test (3.4) done in the self-dual method. By reordering the

primal variables, we can assume that j = 2 is chosen in these ratio tests.

The pivot for the self-dual method is done in the (ul, z 2) position. If we let E2 be an

elementary matrix, i.e. an identity matrix except for its first column E 1:

1= -2) and E,=(E m-i '
a12

where I. is a pxp identity matrix, the new tableau is:

Xl,... ,X, Ul ... gum RIS FBAR

Z2
U2: -EA El -Elb Elf

Urn
z -C2/al 2)al. + c (C2 /a 1 2 ) 0

DEAR (-d 2/a1 2 )al. + d (d2/a12) 0 S = b_/I_

Tableau 3.3

where a,. denotes the first row of A. While the self-dual method has done a pivot on the

primal linear program, it implicitly has done a pivot on the dual linear program. The

method always maintains complementarity between the primal and dual solutions in the

tableau. Thus, at the same time that X2 entered the set of basic variables, replacing ul,

yj implicitly replaced v2 . After two pivots in Lemke's method, 6 has replaced ul, and y]

has replaced v2. X2 is now the variable entering into the set of basic variables. We will

now show that the Lemke system can be pivoted in such a way that X2 replaces 6, and the

bases between the two methods will correspond again after this pivot. Later we will show

that Lemke's method uses X2 as the driving variable to choose the same outgoing variable

as the self-dual method, while i remains in the basis the entire time (until optimality). It

is now time for the first lemma.

Lemma 3.1. In Lemke's method, after two pivots, the coefficient in the x 2 column for

is positive. In other words, d#/dX2 < 0.

7
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Proof. After the first pivot, the desired coefficient a = -al2/(-fl) = a12/fl. Since the

coefficient in the first row in th. column for V, is zero, the second pivot does not modify

a. Hence a remains positive since a12 > 0 and fi > 0 from the previous ratio tests (3.3)

and (3.6). 1

If after doing the first two pivots of Lemke's method, we pivot on this nonzero element

a, we form a new tableau that can be obtained by doing a block pivot

Y1 X2

0 -a12

:v2 a12  0

on Tableau 3.1. This is the same as performing the exchange (V2, Y) followed by (ul, X2).

This is done by setting

1 0 0
,2 -a13 and E2  2 (3.7)

a12Ia12 •0 1.-2

\ -al,

and creating the following tableau:

U1,...,gum VI,...,Vn Y1 .. ,Ym X1,...,Xn RHS

U 1

Im 0 0 -A -f -b
Um

V1

Y1

V3 0 E2 E 2 AT 0 -E 2 d E 2c

'On

Tableau 3.4

Then we exchange ul and X2 by pivoting on the (u1 , z 2) element. This pivot is very

8
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similar to the pivot done in the self-dual method. It produces the following system:

U 1 ,... ,Um Vi.•Vn Yl,... Vm Xl,... 9 RES

Z2
U2

0 El 0 -EjA -Elf -E 1 b

tim

V1
Y1

V3 0 E 2  E 2AT 0 -E 2 d E2 c

V .n

Tableau 3.5

This is a valid canonical form for Lemke's method, since at 0 e1, the system is feasible.

Lemke's method can be started from Tableau 3.5 with # as the first entering variable. By

examining Tableaus 3.3 and 3.5, the ratio tests to find the primal variable blocking the

decrease of 0, i.e.,

min {(-Ejb),/(Ejf)i : (Elf)i > 0), (3.8)

are seen to be the same for both methods. Note that (E2 c)j = cj - (alj/a 12 )c2 for j $ 2,

(E2c) 2 = c2 /a 12 , (-E 2d)j = -dj + (aij/a 2)d 2 for j 6 2, and (-E 2 d)2 = -d 2 /a12 . This

corresponds to the rows CBAR and DBAR in Tableau 3.3. Hence the ratio test to find the

dual variable blocking the decrease of 0,

min {(E 2c)i/(E2d)j : (E2d)i > 0}, (3.9)j= I,...,In

is the same for both methods. We have now proved the following:

Lemma 3.2. After one pivot in the self-dual method and two pivots in Lemke's method,

the driving variable for Lemke's method can be pivoted into the basis for 6 such that the

canonical forms of the new systems after rearrangement of rows and columns correspond

to Tableaus 3.1 and 3.2. Each method can be restarted from its respective new tableau.

The correspondence in Lemma 3.2 is achieved by relabeling the variables in Tableaus

3.3 and 3.5. This is done by letting the m primal basic variables represent u. If this is

9



done, then the two tableaus correspond to the same linear program, which is in a new

canonical form. The new form is equivalent to the initial form of the linear program by

pivoting.

However, Lemke's method has a driving variable which does not replace 0. We will

now compare the ratio tests done by the self-dual method after one pivot and Lemke's

method after 2 pivots.

The self-dual method performs the following ratio test on the primal variables:

minm { k-' : (Elf)i > 0i=2,..... (E lf)i
= n {m-i(bi - (ai2 /aI 2 )bI) :- (ai}aI)I > 0

=2 I. f - (a,2/a12)- /

=i...nm a12fb, a1 2 : a12 fi- ai2h > 0 (3.10)

When i = 1,
(-Elb)i = b1/a 12  (3.11)
(Elf), -f1 /a 12

Since the ratio test is only considered when the denominator is positive, and f, > 0 and

a12 > 0 from the previous iteration, -fj/a 12 < 0, which implies that i = 1 has no effect

on this ratio test.

The self-dual method performs the following ratio test on the dual variables:

n cj - (a1j/a 12)C2 : dj - (aij/a 2)d2 > 0 (3.12)
JI , - (a1 3/al 2 )d2 3

- a2 { c - c2a,* : a1 2dj - aljd 2 > 0 (3.13)
j=i,. al2di - a1jd 2  I

The dual variable for ul is also included in the ratio test, when d2 > 0, yielding the ratio

c2/al 2 _ C2 (3.14)
d2/a12  d2

For Lemke's method, let

1 f
23 =f' E, = ( _ '(3.15)

10
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zi ad 1,(3.16)

Them, after ow pivot on Tableau 3.2, the following tableau is obtained.

33,.. .,m~us ,., 1ig ... ,us 3 ,. .M LBS
* 1

u2 0
A 0 0 -A -Eb

Ulm

E4  0 IAT - AT

Vn 0

Tableau 3.6

yi is now the driving variable. The next pivot is on the (vt2, V) element. It produces the

tableau

Ul,... ,Uw V1,... Iv .- ,Pu ZR,... s LS
* T
U2 0

A E 0 0 -E 3 A -E 3 b

U-

Y'

U3 E2E4  0 E2  E2AT -EaT E E~'

0
V _

Tableau 3.7

At this point, z2 is the driving variable. The column a corresponding to Z2 has{ a12/fl, if k = 1;

Oh- (f/f )al 2 - a12, if k = 2,..., m;
42/f, if k = m + 2;
(d,/f1)a 12 - (/fl)alj, if k = m + 1,... ,m + n, k # m + 2, j=k -.

(3.17)
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For the right-hand side, the k'h element is:

b, I/fi, if k = 1;
(f/fa)b -bb, if k = 2,...,m;

W13(k) = (2 + (du/fi)b1)/a12, if k = m + 2;
C, + (dj/f)bl - (auik/'a 2 )(C2 + (d2/f)b 1 ), if k = m + 1,... ,m + n,

k m + 2, k-m.
(3.18)

The ratio test for the third iteration of Lemke's method will be

min {RES()/Or& : Ok > 01. (3.19)
kmi,...,M+m

We now wish to compare the results of the self-dual ratio tests (3.10),(3.13), and (3.14)

after one pivot, and the ratio test (3.19) for Lemke's method after two pivots. The term

"winner" will refer to the index of the variable (or the variable itself) that is the argument

of a minimum ratio test. We will do the following:

(I) Compare the winners among k = 2,... ,m in (3.19) and (3.10). Note that k = 1

corresponds to termination of Lemke's method.

(II) Compare the winners among k = m + ,...,n in (3.19) and (3.13) or (3.14).

(III) Compare the two winners in (I) and (11).

Lemma 3.3. Without Jorigeneraty, suppose i = 4 is the winner of the self-dual ratio

test (3.10) for i = 2,... ,M. Then k =4 is the winner of the Lemke ratio test (3.19) for
k = 2,...m

Proof. Suppose on the contrary k = 3 was the winner of the Lemke ratio test for k =

2,... , m. Then
(/1f/)hb - b (f41f,)bj - b4(3.20)

(fs/f)a12 - a32 (14/1)a12 - a4 2

which implies
Isbi-liah f4 b1-fib4a12f - 63 6121 - f4211 (3.21)al, - a32ha an fh - a42h1

with (f1/fl)a12 - a32 > 0 and (14/11)a12 - a42 > 0 (by equation (3.19)). Since i= 4 was

the winner of the self-dual ratio test (3.10) for i = 2,..., m,

a42b - 4a12 a32b -,3a(
a1214 - a4211 6121 - a(322

12



Note that the Lenke ratio test implies that the denominators agree between the two

methods. The difference between the numerators would lead one to believe that the two

tests are not equivalent.

Equation (3.22) implies (after cross multiplication)

a12a42 b f 3 - a2 2 sb4 - a32a42blf1 + ai2a32fib4 <

a12a32 bif 4 - al2f4b3 - a32a42 blfl + a12a42flb3, (3.23)

which implies

al2bl(a42f 3 - a3214) - a, 2(f3b4 - b3f4) + al2 (a 32 b - a4 2b) < 0, (3.24)

which implies

bl(a 42f 3 - a3afg) - a 2 (f3 b4 - b~f 4 ) + fi(a 32 b4 - a42 63 ) < 0. (3.25)

Equation (3.21) implies (after cross multiplication)

al2biff4 - al2flb3f 4 - a4i2biff3 + a42fdjb <

al 2bif3f4 - al2flf3b4 - a32fibif 4 + a32 f'b 4 , (3.26)

which implies

0 < fhbl(a 42f 3 - a32 f4 ) - fi(a42b3 - a32b) + a12 f1 (b3 f4 - f 3b4 ), (3.27)

which implies

0 < b1(a42f 3 - a32hf4 ) - a(fAb4 - b3 f 4 ) + fi(a 32b4 - a42b3 ). (3.28)

Statements (3.25) and (3.28) are contradictory. Hence the two ratio tests must declare the

same winner.f1

Lemma 3.4. Without loss of generality, suppose j = 4 is the winner of the self-dual ratio

tests (3.13) and (3.14) for j = 1,... ,n. Then k = m + 4 is the winner of the Lemke ratio

test (3.19) for k = m + 1,...,m + n.

Proof. Throughout this proof, the relation k = m+j will hold. Hence, we can interchange

the use of j and k througout the proof. Suppose j = 4 is not the winner of the Lemke

13



ratio test. There are two cases to consider, depending upon whether the winner j is j = 2

or j # 2, which will correspond to using equations (3.14) and (3.13) respectively.

Case 1: j 9 2 is the winner. Without loss of generality, assume j = 3 is the winner.

The Lemke ratio test (3.19) implies:

C3 - IJ c + -L(d3- lud2 C4 - OA2 + -b(d, - 9"d2)
'4 f aC2 a1c2 + f-d-an (3.29)

dLa12 - da13  d' a12 - &jai4

which implies

cf - 21c2 f, + A-(dsa 2 - al3 d2) Cfl - -LC 2 fi + Ai,(da12 - al1d 2 )
C3h 12 ai U - 12 '112 (.0

d3a12 - d2a 1 3  d4 a 12 - d2a14

which implies
c 12 £12 (3.31)

d3a 12 - d2a13  d4 a12 - d2a 14

Since j = 4 was the winner of the self-dual ratio test (3.13),

al2C4 - C2a 4  a1 2c3 - caa3 (3.32)
al 2d4 - al4d2  a12d3 - a13d2  (

Since a12 > 0, equation (3.32) contradicts equation (3.31). So, for the first case, k = m + 4

must be the winner of the Lemke ratio test (3.19).

Case 2: k = m + 2 is the winner of the Lemke test (3.19). Then d2 > 0. The ratio

test implies

(c 2 + (d2 /fl)b)/a12 ) c4 - (a 1 4 /a 2 )c2 + (b1/fl)(d 4 - (a14 /al 2 )d2 ) (3.33)
d2lfl (d4 /fl)a 2 - (d2/fj)a14

which implies

c2 h C f1 - (a14 /a I 2 )c 2fI (3.34)
d2al--o d4 a12 - d2a14

which implies
C2 a 1 2 c4 - c2a14  (3.35)
d2  a12d4 - a 4 d2 "

The self-dual ratio tests (3.13) and (3.14) imply:

a12c4 - c2a 4  < (3.36)
al2d4 - a14 d2  d 2"

Statements (3.35) and (3.36) are contradictory. Hence k = m + 4 must be the winner of

the Lemke test.1
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Corollary. Hithe dual variabe for ul wins the self-dual ratio test (3.13) and (3.14) among

the dual variables, then k = m + 2 will win the Lemke ratio test.

Proof. Similar to Lemma 3.4, Case 2.j

We will now compare the winners of the primal and dual ratio tests.

Lemma 3.5. Without los ogemerality, assume i = 3 is the overal winner of the sl-dual

ratio tests (3.10), (3.13) and (3.14) between the primal and the dual variables. Then k = 3

is the overall winner in the Lemke ratio test (3.19) for k = 1,... ,m + n.

Proof. Without loss of generality, assume that i = 3 and j = 4 are the winners among

the primal and dual variables, respectively, in the self-dual ratio tests. By Lemmas 3.3

and 3.4, k = 3 and k = m + 4 are the winners for the two Lemke ratio tests (3.19) among

k = 1,... ,m and k = m + 1,... ,rm + n, respectively. For the self-dual ratio test, the ratio

for i = 3 must be less than the ratio for j = 4. On the contrary, if k = 3 is not the overall

winner for the Lemke test, then k = m + 4 must be. The Lemke test (3.19) then implies

C- '"C + ~( 4  at) *16

fic 4 - .'fse 2  bl fs b1 - bsfI3.8

dall Y- d4 +  <, (3.37)

a12 - a14  a 12f -as 2which implies

fl 4 - a14flc2  +12f3bl - b<fba12 - b(at2f3 - a32fl)
d4 a 12 - d2a a 12f3 -a2fz (

which implies

i~a1 2c. l4 2) fIal26 - 32
f(al2C4 - a34c2) < 

(3.40)

d4a12 - d2 a14 d2a
The self-dual ratio test implies

a2,- 63a 12 < 12 C4 - a42(.1

alh-7G32f1 dha12 - d2a14

Since fI > 0, (3.40) and (3.41) are contradictory. Hence k = 3 must be the overall winner.[I
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Lemma 3.6. If = 4 is the overal winner of the self-dual ratio tests (3.10) and (3.13),

then k = m + 4 is the overaU winner of the Lemke ratio test (3.19).

Proof. Similiar to Lemma 3.5.J

Lemma 3.7. Hf the dual variable on ul is the overal winner of the self-dual ratio tests

(3.10), (3.13) and (3.14), then k = m + 2 is the overall winner of the Lemke ratio test

(3.19).

Proof. Suppose on the contrary i- 3 i5 the winner among the primal variables of the self-

dual ratio test (3.10), and that ul is the winner among all the dual variables. By Lemmas

3.3 and 3.4, k = 3 and k = m + 2 are the winner in the Lemke ratio test (3.19) among

k = 1,...,m and k = m + 1,..., m + n, respectively. The self-dual ratio test implies:

C2 a32 b - b3a12 (3.42)
d2  al 2f - a321

The Lemke ratio test implies

fAN - f,63 (C2 +42(.3
a1213 - ;32h1 d2/f ' (3.43)

which implies
-<--,sh-.ib 2f (3.44)

a12 al2f3- aV2fA a, 2d2

which implies
-bl(al21 - a3211) + fbla1 2 - f1b3a12 < c2-f, (3.45)

@121 - <321 (4
which implies

ae2fibi - f, b3a12 C2 f,
al2fb - ba32f1 2 (3.46)

Since f1 > 0, (3.42) and (3.46) are contradictory. Hence & = m + 2 must be the overall

winner of the Lemke ratio test.1

We have now shown the following: If Lemke's method is executed in a normal manner,

X2 will become the driving variable on the third iteration. The same variable will block z 2

as if ZX2 replaced 0, and then Lemke's method was restarted from the new skew-symmetric

form, with a ratio test done between the column UlS and 5. But this form is equivalent

to restarting the self-dual method ater one iteration. If the self-dual method takes t

iterations, this argument can be used for each t = 1, 2,... t, since the inductive assumptions

will hold on each of these iterations. Hence we have proved:
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Theorem. Asume that Dantsig's sel-dual parametric algorithm is executed on (1.1)

and that Lemke's algorithm i executed on (1.2) and an optimal soution is found by the

self-dual method in I iteratjos. Then the pivots of iteration t of the self-dual algorithm

correspo n in a precise way to the pivots of iterations 2t - 1, 2t and 2t + 1 of Lemke's

a rithm, fr t = 1, 2,..., t.

Note that Lemke's method will take 21 + I iterations. The extra pivot comes when

finding the optimal solution, when the last driving variable replaces 9.

4. An Example

In this section, we give an example to illustrate the theorem. In the tableaus the angle

brackets () indicate the next pivot that will occur. Consider the linear program

minimize 4z, - 3X2

subject to - 2x, - 2z 2  -19

1 -Z 1

-xl + 2z 2

ZlZX 2 0

The initial tableau corresponding to Tableau 3.1 for the self-dual method is set up as

follows:

Z X2 U1 U2 U3 PHS FBAR
u1 2 2 1 0 0 19 0
U2 -1 (1) 0 1 0 -1 1
U3 1 -2 0 0 1 -2 1
z 4 -3 0 0 0 1

DBAl 0 1 0 0 0 O+ 00+

Tableau 4.1

G is decreased from +oo and is blocked by the reduced cost for X2 at a value 01 = 3. X2 is

the incoming nonbasic variable and the ratio test indicates that u2 is the variable that z 2

17



will replace. The pivot is performed, yielding the tableau

_1 i 2 Ul U2 U3 RKS FBAR
u, 4 0 1 -2 0 21 -2
2 -1 1 0 1 0 -1 1
", (-1) 0 0 2 1 -4 3
z 1 0 0 3 0

DBAI 1 0 0 -1 0 O=3

Tableau 4.2

After interchanging the columns for u2 and 2 of this tableau, we arrive at a tableau that

corresponds to Tableau 4.1:

21 U2 Ul X2 U3 UKS FBAR
u1 4 -2 1 0 0 21 -2
X2 -1 1 0 1 0 -1 1
U3 (-1) 2 0 0 1 -4 3
z 1 3 0 0 0

DBAl 1 -1 0 0 0 9 =3

Tableau 4.2a

At this point, all the reduced costs are positive for 0 < e < 3. Hence, e is reduced to a

value of j, since it is blocked by the primal basic variable U3. The dual simplex method

is invoked, and 21 replaces us in the set of basic variables. The pivot is performed on

Tableau 4.2, yielding the tableau:

X1 X2 UI U U3 u2  S FBAR
u1 0 0 1 6 4 5 10
X2 010-1-1 3 -2
__ 1 0 0 -2 -1 4 -3
z 0 0 0 5 1

DBAR 0 0 0 1 1

Tableau 4.3

Note that all the reduced costs and primal variables are nonnegative for 9 = 0, and hence

the optimal solution has been found. This table can be rearranged by interchanging the

18



columns to yield a tableau that corresponds to Tableau 4.1:

____ U2 U3  U1 X2 ZI RES FEAR

U1 6 4 1 0 0 5 10
X2 -1-1 01 0 3 -2

X__ -2 -1 00 1 4 -3
z1 5 1 0 0 0

DBAR 1 0 0 0 31:1_

Tableau 4.3a

For Lemke's method, the initial tableau is:

U1 U2 U3 V'1 VJ2 1 Y/2 Y/3 X1 X2 US
is1  10 0 00 00 0 22 0 19

U2 0 1000 0 000-1 1 -1 -1
U3 0 0 1 0 0 0 0 0 1 -2 -1 -2

V100 0 10 -2 1-1 0 0 0 4
V200 00 1 -2 -12 00 (1 -3

Tableau 4.4

On the first iteration, 9 is the entering basic variable. It replaces v2 in the set of basic

variables and produces the tableau:

U51 U2 U3 Vl V2 1 Y2 Y/3 X1  X2 B US
is1  1 0 0 0 0 0 0 0 2 2 0 19
Us2  0 1 0 0-1 2 1 -2-1 (1) 0 2
Us3  00 1 0-1 2 1-21 -2 0 1

V1 0 0 0 1 0 -2 1 -1 0 0 0 4
0 0 000-1 2 1-2 00 1 3

Tableau 4.5

The complement Of V2, namely X2 , is now the entering basic variable. It replaces U2 in the

set of basic variables and produces the tableau:

U1 U 2  U53 V1  V2  1 1/2 Y/3 X1 X2 RUS
11 -2 00 2 -4 -2 44 0 0 15

X2 0 10 0-1 2 1 -2-1 1 0 2
U53 0 2 10-3 6 (3) -6 -10 0 5

V1 0 0 0 1 0 -2 1 -1 0 0 0 4
0 0 00 0-1 2 1 -2 00 1 3

Tableau 4.6
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The complement of U2, Y2, is now the entering basic variable. To show the correspondence

to Tableau 4.2a, we pivot y2 into the basis for 9, rearrange the columns, and produce the

tableau:

U1 z2 U3 VI Y2 Y1 V2 Y3 X1 U2 UIS
1 0 0 0 0 0 0 0 4 -2 2 21

X2 0 1 0 0 0 0 0 0 -1 1 -1 -1
U3 0 0 1 0 0 0 0 0 -1 2 -3 -4
V1 0 0 0 1 0 -4 1 1 0 0 -1 1

1 0 0 0 0 1 2 -1 -2 0 0 1 3

Tableau 4.6a

y2 is the driving variable in Tableau 4.6 and replaces u3 in the set of basic variables to

produce the tableau:

U1  U2 U3 V1  V2 Y1 Y2 Y3 Z1 Z2  9 US
u1 1 -2/3 2/3 0 0 0 0 0 10/3 0 0 55/3
z2 0 1/3 -1/3 0 0 0 0 0 -2/3 1 0 1/3
12 0 2/3 1/3 0 -1 2 1 -2-1/3 0 0 5/3
v1 0 -2/3-1/3 1 1 -4 0 1 1/3 0 0 8/3
S 0 -2/3-1/3 0 0 0 0 0 1/3 0 1 4/3

Tableau 4.7

The complement of U3, Y3, is now the entering basic variable. It replaces v, in the set of

basic variables and produces the tableau:

U1 U2 U3 V1 V2 Y1 Y2 Y3 X1 X2 R US
U1  1 -2/3 2/3 0 0 0 0 0 10/3 0 0 55/3
X2 0 1/3 -1/3 0 0 0 0 0 -2/3 1 0 1/3
Y2 0 -2/3-1/3 2 1 -6 1 0 1/3 0 0 19/3
3 0 -2/3-1/3 11 -4  0 1 1/3 0 0 8/3

0 -2/3-1/3 00 0 0 1/3 0 1 4/3

Tableau 4.8

The complement of vj, zi, is now the entering basic variable. It replaces B in the set of
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basic variables and produces the optimal tableau:

U1  U2  U3  Vl V2  Y1 Y2 Y3 XI 2 0 lS

U1 1 6 4 0 0 0 0 0 0 0 -10 5
X2 0 -1 -1 0 0 0 0 0 0 1 2 3
Y2 0 0 0 2 1 -6 1 0 0 0 -1 5
Y3 0 0 0 1 1 -4 0 1 0 0 -1 1
X1 0 -2 -1 00 0 0 0 1 0 3 4

Tableau 4.9

By reordering the columns of this tableau, we get a tableau that corresponds to Tableau

4.3a.

The following chart compares the pivots done in each method. For each pivot, the

notation (a, b) indicates that b replaces a in the set of basic variables by an explicit pivot.

For the self-dual method, the notation (a, b) indicates that b replaces a by an implicit

pivot.

Self-Dual Lemke
ltn Pivot Pivot Itn

(v2, 0) 1

(u2,X2)
1 (u2,X2 ) 2

(V2, Y12)
(u3,y2) 3

(u3, I)
2 (v, Y3) 4

(VI, Y3)
___ _ ___ __ (0, zi) 5

It is interesting to note how the third iteration of Lemke's method "links" the first

and second iterations of the self-dual method.
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